Archives

  • 2019-10
  • 2019-11
  • 2020-03
  • 2020-07
  • 2020-08
  • br Z Pranjol N Gutowski M

    2020-08-30


    [76] Z. Pranjol, N. Gutowski, M. Hannemann, J. Whatmore, T26: tumour secreted factors cathepsins D and L induce pro-angiogenic changes in human omental microvascu-lar endothelial 3XFLAG (HOMECs) in ovarian cancer metastasis, Eur. J. Cancer Suppl. 13 (2015) 44.
    [77] M. Glondu, E. Liaudet-Coopman, D. Derocq, N. Platet, H. Rochefort, M. Garcia, Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells, On-cogene 21 (2002) 5127–5134.
    N. Gaponik, A.S. Susha, M. Winterhalter, W.J. Parak, Nanoengineered polymer cap-sules: tools for detection, controlled delivery, and site-specific manipulation, Small 1 (2005) 194–200. [85] K. Miyata, N. Nishiyama, K. Kataoka, Rational design of smart supramolecular as-semblies for gene delivery: chemical challenges in the creation of artificial viruses, Chem. Soc. Rev. 41 (2012) 2562–2574.
    [86] R. Loser, J. Pietzsch, Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes, Front Chem 3 (2015) 37. [87] J. Yang, R. Zhang, H. Pan, Y. Li, Y. Fang, L. Zhang, J. Kopeček, Backbone degradable N-(2-Hydroxypropyl)methacrylamide copolymer conjugates with gemcitabine and paclitaxel: impact of molecular weight on activity toward human ovarian car-cinoma xenografts, Mol. Pharm. 14 (2017) 1384–1394.
    Please cite this article as: D. Dheer, J. Nicolas and R. Shankar, Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases, Adv. Drug Deliv. Rev., https://doi.org/10.1016/j.addr.2019.01.010
    [89] Y. Zhou, J. Yang, R. Zhang, J. Kopeček, Combination therapy of prostate cancer with HPMA copolymer conjugates containing PI3K/mTOR inhibitor and docetaxel, Eur. J. Pharm. Biopharm. 89 (2015) 107–115. [90] A. Duangjai, K. Luo, Y. Zhou, J. Yang, J. Kopeček, Combination cytotoxicity of back-bone degradable HPMA copolymer gemcitabine and platinum conjugates toward human ovarian carcinoma cells, Eur. J. Pharm. Biopharm. 87 (2014) 187–196. [91] R. Zhang, J. Yang, M. Sima, Y. Zhou, J. Kopeček, Sequential combination therapy of ovarian cancer with degradable N-(2-Hydroxypropyl)methacrylamide copolymer paclitaxel and gemcitabine conjugates, Proc. Natl. Acad. Sci. U. S. A. 111 3XFLAG (2014) 12181–12186. [92] Z.-H. Peng, J. Kopeček, Synthesis and activity of tumor-homing peptide iRGD and histone deacetylase inhibitor valproic acid conjugate, Bioorg. Med. Chem. Lett. 24 (2014) 1928–1933. [93] Y. Zhou, J. Yang, J.S. Rhim, J. Kopeček, HPMA copolymer-based combination ther-apy toxic to both prostate cancer stem/progenitor cells and differentiated cells in-duces durable anti-tumor effects, J. Control. Release 172 (2013) 946–953. [94] N. Larson, J. Yang, A. Ray, D.L. Cheney, H. Ghandehari, J. Kopeček, Biodegradable multiblock poly(N-2-hydroxypropyl)methacrylamide gemcitabine and paclitaxel conjugates for ovarian cancer cell combination treatment, Int. J. Pharm. 454 (2013) 435–443.
    [102] S.J. Shirbin, K. Ladewig, Q. Fu, M. Klimak, X. Zhang, W. Duan, G.G. Qiao, Cisplatin-induced formation of biocompatible and biodegradable polypeptide-based vesicles for targeted anticancer drug delivery, Biomacromolecules 16 (2015) 2463–2474.
    Please cite this article as: D. Dheer, J. Nicolas and R. Shankar, Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases, Adv. Drug Deliv. Rev., https://doi.org/10.1016/j.addr.2019.01.010
    [157] C. Fiehn, F. Kratz, G. Sass, U. Muller-Ladner, E. Neumann, Targeted drug delivery by in vivo coupling to endogenous albumin: an albumin-binding prodrug of metho-trexate (MTX) is better than MTX in the treatment of murine collagen-induced ar-thritis, Ann. Rheum. Dis. 67 (2008) 1188–1191.
    [163] G.M. Dubowchik, R.A. Firestone, L. Padilla, D. Willner, S.J. Hofstead, K. Mosure, J.O. Knipe, S.J. Lasch, P.A. Trail, Cathepsin B-labile dipeptide linkers for lysosomal re-lease of doxorubicin from internalizing immunoconjugates: model studies of enzy-matic drug release and antigen-specific in vitro anticancer activity, Bioconjug. Chem. 13 (2002) 855–869.
    [169] F. Zheng, P. Zhang, Y. Xi, K. Huang, Q. Min, J.-J. Zhu, Peptide-mediated core/satellite/ shell multifunctional nanovehicles for precise imaging of cathepsin B activity and dual-enzyme controlled drug release, Npg. Asia Mater. 9 (2017) e366. [170] P.T. Sam, B. Alejandra Martinez de Pinillos, P. Hayley, C.A. Mosse, F.C. John, M. Alexander, P.M. Anthony, N. Nikolitsa, Cathepsin B-degradable, NIR-responsive nanoparticulate platform for target-specific cancer therapy, Nanotechnology 28 (2017) 055101.